57 research outputs found

    Efficient Uncertainty Quantification and Reduction for Over-Parameterized Neural Networks

    Full text link
    Uncertainty quantification (UQ) is important for reliability assessment and enhancement of machine learning models. In deep learning, uncertainties arise not only from data, but also from the training procedure that often injects substantial noises and biases. These hinder the attainment of statistical guarantees and, moreover, impose computational challenges on UQ due to the need for repeated network retraining. Building upon the recent neural tangent kernel theory, we create statistically guaranteed schemes to principally \emph{quantify}, and \emph{remove}, the procedural uncertainty of over-parameterized neural networks with very low computation effort. In particular, our approach, based on what we call a procedural-noise-correcting (PNC) predictor, removes the procedural uncertainty by using only \emph{one} auxiliary network that is trained on a suitably labeled data set, instead of many retrained networks employed in deep ensembles. Moreover, by combining our PNC predictor with suitable light-computation resampling methods, we build several approaches to construct asymptotically exact-coverage confidence intervals using as low as four trained networks without additional overheads

    Quantifying Epistemic Uncertainty in Deep Learning

    Full text link
    Uncertainty quantification is at the core of the reliability and robustness of machine learning. In this paper, we provide a theoretical framework to dissect the uncertainty, especially the epistemic component, in deep learning into procedural variability (from the training procedure) and data variability (from the training data), which is the first such attempt in the literature to our best knowledge. We then propose two approaches to estimate these uncertainties, one based on influence function and one on batching. We demonstrate how our approaches overcome the computational difficulties in applying classical statistical methods. Experimental evaluations on multiple problem settings corroborate our theory and illustrate how our framework and estimation can provide direct guidance on modeling and data collection effort to improve deep learning performance

    Self-Aligned Concave Curve: Illumination Enhancement for Unsupervised Adaptation

    Full text link
    Low light conditions not only degrade human visual experience, but also reduce the performance of downstream machine analytics. Although many works have been designed for low-light enhancement or domain adaptive machine analytics, the former considers less on high-level vision, while the latter neglects the potential of image-level signal adjustment. How to restore underexposed images/videos from the perspective of machine vision has long been overlooked. In this paper, we are the first to propose a learnable illumination enhancement model for high-level vision. Inspired by real camera response functions, we assume that the illumination enhancement function should be a concave curve, and propose to satisfy this concavity through discrete integral. With the intention of adapting illumination from the perspective of machine vision without task-specific annotated data, we design an asymmetric cross-domain self-supervised training strategy. Our model architecture and training designs mutually benefit each other, forming a powerful unsupervised normal-to-low light adaptation framework. Comprehensive experiments demonstrate that our method surpasses existing low-light enhancement and adaptation methods and shows superior generalization on various low-light vision tasks, including classification, detection, action recognition, and optical flow estimation. Project website: https://daooshee.github.io/SACC-Website/Comment: This paper has been accepted by ACM Multimedia 202

    Attentive Symmetric Autoencoder for Brain MRI Segmentation

    Full text link
    Self-supervised learning methods based on image patch reconstruction have witnessed great success in training auto-encoders, whose pre-trained weights can be transferred to fine-tune other downstream tasks of image understanding. However, existing methods seldom study the various importance of reconstructed patches and the symmetry of anatomical structures, when they are applied to 3D medical images. In this paper we propose a novel Attentive Symmetric Auto-encoder (ASA) based on Vision Transformer (ViT) for 3D brain MRI segmentation tasks. We conjecture that forcing the auto-encoder to recover informative image regions can harvest more discriminative representations, than to recover smooth image patches. Then we adopt a gradient based metric to estimate the importance of each image patch. In the pre-training stage, the proposed auto-encoder pays more attention to reconstruct the informative patches according to the gradient metrics. Moreover, we resort to the prior of brain structures and develop a Symmetric Position Encoding (SPE) method to better exploit the correlations between long-range but spatially symmetric regions to obtain effective features. Experimental results show that our proposed attentive symmetric auto-encoder outperforms the state-of-the-art self-supervised learning methods and medical image segmentation models on three brain MRI segmentation benchmarks.Comment: MICCAI 2022, code:https://github.com/lhaof/AS

    Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection

    Full text link
    Multi-class cell nuclei detection is a fundamental prerequisite in the diagnosis of histopathology. It is critical to efficiently locate and identify cells with diverse morphology and distributions in digital pathological images. Most existing methods take complex intermediate representations as learning targets and rely on inflexible post-refinements while paying less attention to various cell density and fields of view. In this paper, we propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions and is trained collaboratively through two sub-networks, a global and a local network. The local branch learns to infer distorted input images of smaller scales while the global network outputs the large-scale predictions as extra supervision signals. We further introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training. The AAT module works by learning to capture the transformed image regions that are more valuable for training the model. Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.Comment: ICCV 2023, released code: https://github.com/lhaof/ACForme

    Prompt-based Grouping Transformer for Nucleus Detection and Classification

    Full text link
    Automatic nuclei detection and classification can produce effective information for disease diagnosis. Most existing methods classify nuclei independently or do not make full use of the semantic similarity between nuclei and their grouping features. In this paper, we propose a novel end-to-end nuclei detection and classification framework based on a grouping transformer-based classifier. The nuclei classifier learns and updates the representations of nuclei groups and categories via hierarchically grouping the nucleus embeddings. Then the cell types are predicted with the pairwise correlations between categorical embeddings and nucleus features. For the efficiency of the fully transformer-based framework, we take the nucleus group embeddings as the input prompts of backbone, which helps harvest grouping guided features by tuning only the prompts instead of the whole backbone. Experimental results show that the proposed method significantly outperforms the existing models on three datasets.Comment: MICCAI 2023, released code: https://github.com/lhaof/PG

    QDTrack: Quasi-Dense Similarity Learning for Appearance-Only Multiple Object Tracking

    Full text link
    Similarity learning has been recognized as a crucial step for object tracking. However, existing multiple object tracking methods only use sparse ground truth matching as the training objective, while ignoring the majority of the informative regions in images. In this paper, we present Quasi-Dense Similarity Learning, which densely samples hundreds of object regions on a pair of images for contrastive learning. We combine this similarity learning with multiple existing object detectors to build Quasi-Dense Tracking (QDTrack), which does not require displacement regression or motion priors. We find that the resulting distinctive feature space admits a simple nearest neighbor search at inference time for object association. In addition, we show that our similarity learning scheme is not limited to video data, but can learn effective instance similarity even from static input, enabling a competitive tracking performance without training on videos or using tracking supervision. We conduct extensive experiments on a wide variety of popular MOT benchmarks. We find that, despite its simplicity, QDTrack rivals the performance of state-of-the-art tracking methods on all benchmarks and sets a new state-of-the-art on the large-scale BDD100K MOT benchmark, while introducing negligible computational overhead to the detector

    Push the Boundary of SAM: A Pseudo-label Correction Framework for Medical Segmentation

    Full text link
    Segment anything model (SAM) has emerged as the leading approach for zero-shot learning in segmentation, offering the advantage of avoiding pixel-wise annotation. It is particularly appealing in medical image segmentation where annotation is laborious and expertise-demanding. However, the direct application of SAM often yields inferior results compared to conventional fully supervised segmentation networks. While using SAM generated pseudo label could also benefit the training of fully supervised segmentation, the performance is limited by the quality of pseudo labels. In this paper, we propose a novel label corruption to push the boundary of SAM-based segmentation. Our model utilizes a novel noise detection module to distinguish between noisy labels from clean labels. This enables us to correct the noisy labels using an uncertainty-based self-correction module, thereby enriching the clean training set. Finally, we retrain the network with updated labels to optimize its weights for future predictions. One key advantage of our model is its ability to train deep networks using SAM-generated pseudo labels without relying on a subset of expert-level annotations. We demonstrate the effectiveness of our proposed model on both X-ray and lung CT datasets, indicating its ability to improve segmentation accuracy and outperform baseline methods in label correction
    • …
    corecore